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Abstract –Subsethood is the degree of containment of one fuzzy 
set in another, usually expressed as a value in the unit interval. 
We extend Kosko’s definition of subsethood to Type-n fuzzy sets, 
for which subsethood is a Type-(n-1) fuzzy set on the unit 
interval. We then show how to compute subsethood for general 
Type-2 and interval Type-3 fuzzy sets. 
 

I.  INTRODUCTION 

Zadeh [1] defined a subset of a fuzzy set as one whose 
membership function is dominated by the containing set.  
Kosko [2] allowed for degrees of subsethood of one fuzzy set 
in another, thus making subsethood itself a fuzzy notion. 
Several other definitions of subsethood have been proposed, 
along with suggested properties that candidate subsethood 
functions should possess [3, 4].  

Subsethood has found many practical applications, e.g. [5, 
6, 7].  In our work on conceptual space theory, subsethood has 
proved to be a fundamental operation used in defining fuzzy 
similarity of properties to properties, of observations to 
concepts, of concepts to concepts, and more [8, 9]. 

Because membership functions are themselves usually 
imprecise in practice, fuzzy sets were extended to Type-2 and 
higher order fuzzy sets by Zadeh [10].  For n > 1, Type-n 
fuzzy sets are sets whose membership functions take values in 
Type-(n-1) fuzzy sets on the unit interval.  Such sets can 
model independent sources of uncertainty. For example, 
consider a universe of Pantone color samples. Uncertainty 
associated with the degree of whiteness of a particular sample 
may be due to uncertainty in what constitutes whiteness, but 
also to variations in the fabric on which the sample is printed, 
and to variations in lighting conditions. So "white" might be 
modelled as a Type-4 fuzzy set on the universe of color 
samples. 

There has recently been renewed interest in application of 
Type-n fuzzy set theory, although most work has focussed on 
Type-2 fuzzy sets [11-15]. Given the importance of 
subsethood as a relationship between fuzzy sets, it is 
worthwhile to investigate how the notion might be defined for 
general Type-n fuzzy sets. Hence, Zadeh’s extension principle 
is used here to generalize Kosko’s definition of subsethood 
(section 2). Section 3 shows how to compute subsethood for 
Type-2 fuzzy sets, starting first with the interval Type-2 case. 

Section 4 deals with subsethood of interval Type-3 fuzzy sets, 
and section 5 gives examples.  

Throughout the paper, ( )M X  denotes the set of functions 

from X to the unit interval and ( )
X
g x dx∫ denotes the 

Lebesgue integral. Measurability is assumed of all sets and 
functions, a condition satisfied by typical real-world 
modelling on vector spaces and finite categorical domains.  

 
II. SUBSETHOOD OF TYPE-N FUZZY SETS 

A. Type-n fuzzy sets  
        For n > 1, the membership function of a Type-n fuzzy 

set, ( )nG� , is a measurable mapping [ ]( )( )

1: 0,1n

n

G
X Mµ −→� , 

called the primary membership function. ( )( )nG xµ � is called the 

secondary membership function at x X∈ , and is a Type-(n-1) 
fuzzy set on the unit interval.  The set of Type-n fuzzy set 
membership functions on X can also be identified with 

[ ]( )10,1 nM X −× . 

Fig. 1 depicts a Type-3 fuzzy set, in which the secondary 
membership function is an interval Type-2 fuzzy set. That is, 

when considered as an element in [ ]( )20,1M X × the 

membership function takes values equal to unity over a 
footprint of uncertainty (FOU) bounded by continuous upper 
and lower bounding functions. 

B. Fuzzy subsethood 

    Kosko [2] defined the subsethood ( , )S G H  of a finite 
Type-1 fuzzy set G in a finite Type-1 fuzzy set H  over the 
same universe X. That definition generalises to 
 

 
( ) ( )( )

( )
min ,

( , )
G HX

GX

x x dx
S G H

x dx

µ µ

µ
= ∫

∫
        (1) 

 
where the integrals can be replaced by sums in the finite case. 
(When both integrals in (1) are zero, subsethood is calculated 
as the infimum of the ratio of the (Riemannian) upper sums.)   
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Fig. 1. Illustration of an interval Type-3 fuzzy set having a Type-2 
membership function ( ) ( , )

xG Gy x yµ µ=� �  defined at x X′∈ .   

 
Subsethood is a function on pairs of membership 

functions rather than on the underlying universe X. That is, 
 

( )( , ) ,G HS G H f µ µ≡            (2) 

 
for ( ) ( ) [ ]: 0,1f M X M X× → defined as 

 

( ) ( ) ( )( ) ( ), min ,
X X

f u v u x v x dx u x dx= ∫ ∫ .          (3) 

 

A Type-n fuzzy set ( )nG�  on X induces a Type-(n-1) fuzzy 

set on ( )M X , through the membership function  

( ) ( )( ){ }( )inf n
xGx X

u u xµ µ
∈

= � . 

We extend definition (1) to Type-2 fuzzy sets by applying 
Zadeh’s Extension Principle [10] to the bivariate function f on 

( )M X  defined in (3). This application gives  

( ) ( )
( )

( )( ) ( )( ){ },
,

sup inf ,
xx HGS G H

x Xf u v z

z u x v xµ µ µ
∈=

= � �� �       (4) 

for ( ),u v M X∈  in the support of f.   

  On Type-3 fuzzy sets, ( )( ) ( )( ){ }3 3inf ,
x xG H

x X
u x v xµ µ

∈
� �  is the 

intersection of fuzzy sets (possibly an infinite number of fuzzy 
sets). By the Extension Principle this intersection is the fuzzy 
set on the unit interval with membership function  
 

( ) ( )( )
( ) ( )( ) ( ) ( )( ){ }

inf ' , ' '
sup inf , ' , , '

x xG Hx Xu x v x z
u x u x v x v xµ µ

∈=
. 

 
Substituting into (4) yields 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ }
( ) ( ) ( )( )

3 3(3) (3),
, ' sup{inf , ' , , '

                            : , ,inf ' , ' '}.

x xG HS G H x X

x X

z z u x u x v x v x

f u v z u x v x z

µ µ µ
∈

∈

=

==

� �� �

Recursive application of the Extension Principle gives the 

expression for subsethood for general Type-n fuzzy sets. 

Using vector notation for conciseness, for any [ ] 20,1 n−∈z  and 

[ ]0,1z∈ , and for ( ) ( ) 2,  and , nu v M X M X −∈ ∈u v ,  

( ) ( )

( )
( ) ( )( )

( ) ( )( ) ( ) ( )( ){ }
( ) ( )

( ) ( )

,

,
inf ,

,

sup inf , , ,

n n

n n
x x

x X

S G H

G Hx Xf u v z
x x

z

u x x v x x

µ

µ µ

∈

∈

=

=

=
u v z

z

u v

� �

� �
.       (5) 

 
The following proposition follows easily: 
 

Proposition  If ( )nG�  and ( )nH�  are interval Type-n fuzzy sets, 

then the subsethood of ( )nG� in ( )nH� , ( )( ) ( ),n nS G H� � , is an 

interval Type-(n-1) fuzzy set. 
 

III. SUBSETHOOD OF TYPE-2  FUZZY SETS 

A. Interval Type 2 sets  

Suppose that Type-2 fuzzy sets  and  G H� � have secondary 

membership functions ( ) 1
xG
zµ =�  for all ( ) ( )0 1,z u x u x ∈    

and ( ) 1
xH
zµ =�  for all ( ) ( )0 1,z v x v x ∈   , otherwise zero. 

From (4), subsethood has membership function 

( ) ( ), 1S G H zµ =� �  for all z  for which there exist 

( ),  u v M X∈ satisfying the conditions: 

 

 ( ) ( ) ( )( ) ( ), min ,
X X

f u v u x v x dx u x dx z≡ =∫ ∫   

and 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1, [ , ], [ , ]x X u x u x u x v x v x v x∀ ∈ ∈ ∈ . 

  
We know that ( ) ( ),

1
S G H

zµ =� �  over some interval 

[ ] [ ], 0,1rs s ⊆A ; we now compute the endpoints of this 

interval. Define  

( ) ( ){ }0 1 0:I x X v x u x= ∈ ≤   

and  

( ) ( ){ }1 0 1:I x X v x u x= ∈ ≥ .  

Then 
 

( )
( ) ( ) ( ) ( )( )

( )
0 1 0 1

,

min ,
I I X I I

X

f u v

v x dx u x dx u x v x dx

u x dx
− ∪

=

+ +∫ ∫ ∫
∫

.   (6) 

Since ( ) ( ) ( )0 1v x v x v x≤ ≤ , we have 

 

 
( ) ( )( ) ( ) ( )( )

( ) ( )( )
0

1

min , min ,

min , ,

v x x u x v x

u x v x x X

ν ≤

≤ ∈
.   (7) 
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Substituting these inequalities into (6) yields the following 
upper and lower bounds of ( ),f u v : 

 

 

( ) ( ) ( ) ( )( )

( )

( )

0 1 0 1

0 0min ,

,

I I X I I

X

v x dx u x dx u x v x dx

u x dx

f u v

− ∪

+ +

≤

∫ ∫ ∫

∫ .       

 

( ) ( ) ( ) ( )( )

( )
0 1 0 1

1 1min ,
I I X I I

X

v x dx u x dx u x v x dx

u x dx
− ∪

+ +
≤
∫ ∫ ∫

∫
.      (8) 

 
We want to find the minimum value of the lower bound 

and the maximum value of the upper bound in order to 

determine the interval taken by ( , )S G H� � .  To find the lower 
bound, first define  

( ) ( ) ( ){ }0 0 1: ,I u x X u x v x x I I< = ∈ < ∉ ∪  

( ) ( ) ( ){ }0 0 1: ,I u x X u x v x x I I> = ∈ > ∉ ∪ , 

so that 

 
( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )

0

0 0

min , , ,

min , , .

u x v x u x x I u

u x v x v x x I u
<

>

= ∈

= ∈
 

Now for each x X∈ we can find a measurable set xB  of X 

such that 

    ( ) ( ) ( ) ( )
0 0 1 1 if ;  if 

 if ;  if 
x x

x x

B I x I B I x I
B I u x I u B I u x I u< < > >

⊂ ∈ ⊂ ∈

⊂ ∈ ⊂ ∈
. 

      
The lower bound in (8) can thus be considered to be the 

following function of ( ) ( )
xB

x u x dxλ ≡ ∫ : 

( ) ( ) ( )
( ) ( )

xX B

K x x Y x
u x dx x

λ
λ

−

+
+∫

 

where 

( ) ( )
( )

( )
( ) ( )0 1 1

0

xI I u I I u B I I u

Y x v x dx u x dx
> < <∪ ∪ − ∩ ∪

= +∫ ∫ and 

( ) ( )
( )

0

1

0  or 
1  or  

x I x I u
K x

x I x I u
>

<

 ∈ ∈=  ∈ ∈
.     (9) 

 
The derivative with respect to ( )xλ  of the lower bound is 

therefore  

( ) ( ) ( ) ( )

( ) ( )
2

x

x

X B

X B

K x u x dx x Y x

u x dx x

λ

λ

−

−

 
+ −  

 
 

+  
 

∫

∫
 

 

=
( ) ( ) ( )

( )
2

X

X

K x u x dx Y x

u x dx

−

 
 
 

∫

∫
. 

 
From (9) it follows that the lower bound is   
 

( )

( )
2

X

Y x

u x dx

−

 
 
 
∫

 

( ) ( ) ( ) ( )( )

( )

0 1 1

0 0

2

min ,
I I I

X

v x dx u x dx u x v x dx

u x dx

 
− + + 
  =

 
 
 

∫ ∫ ∫

∫
  (10) 

when ( )0x I I u>∈ ∪ , and  

 

( ) ( )

( )
2

X

X

u x dx Y x

u x dx

−

 
 
 

∫

∫
 

( ) ( )( ) ( ) ( ) ( )( )( )

( )

0 0 1

0 0

2

min ,
I X I I

X

u x v x dx u x u x v x dx

u x dx

− ∪

 
− + − 

  =
 
 
 

∫ ∫

∫

                                                                                (11) 
when ( )1x I I u<∈ ∪ .    

The lower bound on ( ),f u v  therefore exhibits intervals of 

monotonic behaviour as a function of ( )xλ .  In the cases 

0x I∈  or ( )x I u>∈ , the lower bound decreases 

monotonically with increasing ( )xλ , and thus achieves its 

minimum value when ( ) ( )1u x u x= (more precisely, when 

( ) ( )1' 'u x u x=  for all 'x  in xB ).  In the case 1x I∈ , the lower 

bound increases monotonically with increasing ( )xλ  and 

thus achieves its minimum value when ( ) ( )0 .u x u x=   In the 

case ( )x I u<∈  the lower bound increases monotonically with 

increasing ( )xλ up to a value ( ) ( )0u x v x= , but then 

decreases monotonically with further increases in ( )xλ .  

Therefore its minimum will occur for one of the two values 
( ) ( )0u x u x=  or ( ) ( )1u x u x= , but unfortunately where the 

minimum occurs cannot always be determined analytically.   
Repeating these computations for the derivative of the 

upper bound in (8) yields expressions analogous to those in 
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(11) with ( )0v x  replaced by ( )1 .v x In the 

cases ( ) ( )0 0 1 1 or ;x I x I I v x u x∈ ∉ ∪ > , the upper bound 

decreases monotonically with increasing ( )xλ and thus 

achieves its maximum value when ( ) ( )0u x u x=  if 0x I∈  and 

at ( ) ( )1u x v x=  if ( ) ( )0 1 1;x I I v x u x∉ ∪ > .  In the case 

1x I∈ , the upper bound increases monotonically with 

increasing ( )xλ and thus achieves its maximum value when 

( ) ( )1u x u x= .  In the case ( ) ( )0 1 1;x I I v x u x∉ ∪ <  the upper 

bound increases monotonically with increasing ( )xλ  up to a 

value ( ) ( )1u x v x= , but then decreases monotonically with 

further increases in ( )xλ .  Thus it achieves its maximum 

value at ( ) ( )1u x v x= . 

In summary, the left endpoint of the subsethood interval 

[ ], 0,1l rs s ⊆    is taken at the functions u, v defined by: 

 

 
( )

( )
( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )
( ) ( )

1 0

0 1

1 1 0 0

0 1 0 0 1

0

 or 

u x x I
u x x I

u x
u x v x u x v x

u x u x u x v x u x

v x v x

∈
 ∈=  ≥ ≥
 < <

=

.    (12) 

 

The right endpoint rs  is taken at the functions defined by 

 
( )

( )
( )
( )

( ) ( )

0 0

1 1

1 0 1

1

,

u x x I
u x u x x I

v x x I I

v x v x

∈
= ∈
 ∉

=

.      (13) 

 
Hence 
 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 1

2 3

1 1

0 1 0 1

0 0

1 0

1 1

0 1 1

x I x I

x I x I

x I x I
r

x I x I x I I

v x dx u x dx
s

u x dx u x dx

v x dx u x dx
s

u x dx u x dx v x dx

∉ ∈

∈ ∈

∉ ∈

∈ ∈ ∉ ∪

 + 
 =
 + 
 

 + 
 =

 + + 
 

∫ ∫

∫ ∫

∫ ∫

∫ ∫ ∫

A

.     (14) 

 
Here, 2I  and 3I  are the respective indicator functions 
representing the conditions in the two lower expressions for 

( )u x  in  (12).  

 
B. General Type-2 Fuzzy Sets 

Given Type-2 fuzzy sets G�  and ,H�  set 

[ ]( ) ( );  ( ) ( ) for all 0,1
xxx x HGg y y h y y yµ µ= = ∈� �  The approach 

we take to computing subsethood is similar to that used to 
analyse fuzzy weighted averages [16] using α-cuts of the 
membership functions ( )xg y  and ( ).xh y  The α-cuts of 

( )xg y and ( )xh y are the intervals  
 

   ( ) ( ) { }0 1( ), ( ) : ( )xu x u x y g yα α α= ≥   ,   

( ) ( ) { }0 1( ), ( ) : ( )xv x v x y h yα α α= ≥   .             (15) 

 
The significance of α-cuts lies in the decomposition 

theorem [17], which enables a fuzzy membership function to 
be expressed in terms of its α-cuts: 

 
 

[0,1]
( ) sup ( )x gg y I x

αα
α

∈
= .     (16) 

Here, ( )gI x
α

 is the indicator function for the α-cuts, i.e., 

 

 
[ ]0 11, ( )( ), ( )( )

( )
0,g

x u x u x
I x

otherwiseα

α α ∈
= 


.   (17) 

 
The fuzzy membership functions ( )xg y  and ( )xh y  defined 
over the unit interval, representing the range of values taken 
by y, can be discretized into M α-cuts, 1, , Mα α… .  
(Obviously, in the case of a crisp interval set, only the 1α =  
α-cut is needed.)  Then by the Extension Principle, the α-cuts 
for a function of fuzzy variables having non-uniform set 
membership functions are simply given by the function 
applied to the α-cuts of the fuzzy variable set membership 
functions. 

The endpoints of the intervals [ ]( ), ( )rs sα αA  can be 

computed for each mα -cut of ( ) ( ),S G H zµ � �  using (14). Then 

from (4) and the α-cut decomposition theorem [17], the Type-

1 membership for ( , )S G H� �  is given by: 
 

 ( ) [ ],
0,1

, ( ) ( )
( ) sup

0
r

S G H

s z s
z

elsewhereα

α α α
µ

∀ ∈

≤ ≤= 


A
� � .   (18) 

 
In other words, the α-cuts of ( ),

( )
S G H

zµ � �  are determined by the 

intervals [ ]( ), ( )rs sα αA .  Once the points ( ),m mz αA  and 

( ),rm mz α  corresponding to each of the discrete mα -cuts have 

been computed using (15) - (18), the intermediate values may 
be interpolated from these points. 
 

IV. SUBSETHOOD OF TYPE-3 FUZZY SETS WITH INTERVAL 
TYPE-2  SECONDARY MEMBERSHIP 

To compute this subsethood, we use an approach analogous to 
that of Wu and Mendel [18] for linguistic weighted averages.   
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Suppose 3
xG

µ �  and 3
xH

µ �  are membership functions of interval 

Type-2 fuzzy sets associated with the Type-3 fuzzy sets 
( ) ( )3 3,G H� �  respectively (cf. Fig. 1). Denote the upper and 

lower functions membership functions that bound the FOUs 
by ( )U

xg y and ( )L
xg y , and ( )U

xh y  and ( )L
xh y ,  respectively.  

By the proposition in section 2, ( ) ( )( )3 3,S G H� �  has an interval 

Type-2 membership function ( ) ( )( )3 3,
( , )

S G H
z wµ � �  on [ ]0,1 .    Let 

( )U zµ denote the upper bound of the subsethood interval 

( ) ( )( ) ( )3 3,
: , 1

G H
w z wµ = 
 � �  and ( )L zµ  denote the lower bound.  

From (5), ( ) ( )( )3 3,
( , ) 1

S G H
z wµ =� �  if and only if there exist 

functions [ ], ', , ' : 0,1u u v v X →  satisfying the following 

conditions: 

( ) ( ) ( )( ), ,     inf ' , 'x Xf u v z u x v x w∈= =  ; 

( )( ) ( ) ( )( )'L U
x xg u x u x g u x≤ ≤  for all x X∈ ; and 

( )( ) ( ) ( )( )'L U
x xh v x v x h v x≤ ≤  for all x X∈ .  

Subsethood membership is zero otherwise.   

Define Type-2 fuzzy sets , , ,U L U LG G H H� � � �  to have the 
membership functions  

 

 
( ) ( )
( ) ( )

, ,

,
U

L

U
xG

L
xG

x y g y

x y g y

µ

µ

=

=

�

�
     (19) 

 
and similarly for ( ),

UH
x yµ �  and ( ),

LH
x yµ � .  From the 

definitions of subsethood (5) and of the membership functions 
(19), 

( ) ( )
( )

( )( ) ( )( ){ }

( )
( )( ) ( )( ){ }

, , : ,

,

sup inf , , ,

                     sup inf ,          (20)

UUU U HGS G H x Xu v f u v z

U U
x xx Xf u v z

z x u x x v x

g u x h v x

µ µ µ
∈=

∈=

=

=

� � ��

 

 

and similarly for ( ),L LS G H� � .  Moreover, we know from the 

previous section how to compute ( ),U US G H� �  and 

( ),L LS G H� �   

By definition of ( ),U
xg y etc. as the bounds of the FOUs, 

( ) ( )( )( ) ( ) ( )( )( ){ }(3) (3)inf , , , , , 1U U
x xG Hx X

x u x g u x x v x h v xµ µ
∈

=� � . 

So ( ) ( ) ( ),U U

U
S G H z zµ µ≤� � and likewise ( ) ( ) ( ),L L

L
S G H z zµ µ≥� � . 

However, for [ ]', ' : 0,1u v X → , ( ) ( ) ( )( )3 , , ' 1
G

x u x u xµ =�  if and 

only if ( )( ) ( ) ( )( )'L U
x xg u x u x g u x≤ ≤ and likewise 

( ) ( ) ( )( )3 , , ' 1
H

x v x v xµ =�  if and only if 

( )( ) ( ) ( )( )'L U
x xh v x v x h v x≤ ≤ . Thus  

( ) ( )
( )

( )( ) ( )( ){ }
( )

( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

( ) ( ){ } ( )

, ,

,
'
'

sup inf ,

sup  inf  ' , '

U U

L U

L U

U U
x xS G H x Xf u v z

U
x Xf u v z

g u x u x g u x
h v x v x h v x

z g u x h v x

u x v x z

µ

µ

∈=

∈=
≤ ≤
≤ ≤

≡

≥ ≡

� �

. 

So ( ) ( ) ( ),U U

U
S G H z zµ µ=� � . Likewise ( ) ( ) ( ),L L

L
S G H z zµ µ=� � . 

The region lying between these bounding functions is the 

FOU of ( ) ( )( )3 3,S G H� � , i.e. 

 ( ) ( )( )3 3,

1 ( ) ( )
( , )

0

L U

S G H

z w z
z w

elsewhere
µ µµ

 ≤ ≤
= 


��    (21) 

 
V. EXAMPLES OF SUBSETHOOD 

A. General Type-2 fuzzy sets 
 Consider a set X  having two elements, on which is 
defined two Type-2 fuzzy sets with truncated Gaussian 
exponential Type-1 secondary membership functions 

 

( )2

2exp , 3 3, 0 1
( ) 2

0,

i i

i i

y m y m y
y

elsewhere

µ σ σ

  − −  − − ≤ ≤ ≤ ≤  =   



.     (22) 

  
Let the individual fuzzy membership functions in (22) have 
the following parameters: 

1 1 1

2 2 2

1 1 1

2 2 1

( ) : 0.25; 0.03

( ) : 0.6; 0.02

( ) : 0.15; 0.01

( ) : 0.3; 0.02

G G G

G G G

H H H

H H H

y m

y m

y m

y m

µ σ
µ σ
µ σ
µ σ

= =

= =

= =

= =

 

 Then using (18), compute the corresponding Type-1 
membership function for subsethood.  Fig. 2 shows the input 
secondary membership functions with these parameters 
(represented by the solid curves) along with the results of this 
calculation (dashed curve).  
 
B. Subsethood of Type-3 fuzzy sets with interval Type-2 
secondary membership functions 

Consider two interval Type-3 fuzzy sets, where the Type-
2 secondary membership functions have upper and lower 
membership functions of the form of (22), with the means im  

the same for each pair, but with a larger iσ  for the upper 
membership function.  Fig. 3 shows these functions, with the 
area between these functions being the footprint of 
uncertainty.  
 Using (21), we can calculate the corresponding Type-2 
fuzzy set membership for subsethood.  Fig. 4 shows the upper 
and lower membership functions, where the area between the 
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solid and dashed curves represents the footprint of uncertainty 
for each function. 
 

( ) ( )yµ •

y

1( )G y 2( )G y
2 ( )H y1( )H y

Subsethood 
membership 
function

( ) ( )yµ •

y

1( )G y 2( )G y
2 ( )H y1( )H y

Subsethood 
membership 
function

 
Fig.2. Type-1 secondary membership functions of general Type-2 fuzzy sets 

and corresponding Type-1 membership function for subsethood of G�  in H� . 

 

( ) ( )yµ •

y

1( )G y 2 ( )G y
2( )H y1( )H y

( ) ( )yµ •

y

1( )G y 2 ( )G y
2( )H y1( )H y

  
Fig. 3  Type-2 secondary fuzzy membership functions of Type-3 fuzzy sets. 
 The regions between the solid and dashed curves are the footprints of 
uncertainty. 

( ) ( ),SGH yµ

y

( ) ( ),SGH yµ

y  
Fig. 4.  Type-2 fuzzy membership function for the subsethood of G�  and H�  
for the input Type-2 secondary fuzzy membership functions shown in Figure 
3.  The region between these two curves is the footprint of uncertainty. 
 

VI. CONCLUSION 

 We defined fuzzy subsethood for the case of general Type-
n fuzzy sets defined on any set X  with a measure. The Type 
definition follows from the application of Zadeh’s Extension 
Principle to Kosko’s definition of Type-1 subsethood.  The 
general Type-n definitions follow from recursive application 
of the Extension Principle.  We showed how to compute the 
membership as a function of the endpoints of the α-cuts in the 
case of Type-2 fuzzy sets, and gave illustrations for Type-2 
and interval Type-3 fuzzy sets.   
 As for the case of subsethood of Type-1 fuzzy sets, there 
will be many applications for the generalised subsethood.  For 
example, color is often imprecisely gauged due to lighting 
conditions and so on, and thus might be represented by 
assigning Type-2 fuzzy values on three dimensions (e.g. 
RGB).  Subsethood might then be used to describe the 
relationship between colors, generalizing the approach in [6].   

 As with subsethood of Type-1 fuzzy sets, there are also 
plausible alternative definitions of the generalised subsethood. 
A future analysis is needed of features and applicability of 
various contenders.   
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